Javad Bahrami Mohammad Ebrahimabadi Naghmeh Karimi

University of Maryland Baltimore County

тне

Jean-Luc Danger * Sylvain Guilley *°

> * Télécom Paris ° Secure-IC S.A.S

SECLRE-IC

SECURITY SCIENCE COMPANY

Impact of Process Mismatch and Device Aging on **SR-Latch Based True Random** Number Generators

Motivation

Principles of SR-latch TRNG

Stochastic Model

Device Aging

Experimental Setup and Results

Motivation

- True Random Number Generators (TRNGs) are critical for security provision through cryptographic modules
- The ring oscillator-based TRNG introduced in 2007 to fulfill this requirement
- Current security assurance requires at least two sources of randomness (to prevent SPOFs)
- Requirement for Hi-Speed TRNG (>1Gb/s)

Attentions toward SR-latch based TRNGs

Are these SR-latch based TRNGs remain efficient over time?

- How is the uniformity affected over time?
- Does it make the TRNG biased?

True Random Number Generators

Applications

- Initialization vectors (AES-CBC)
- HMAC Keys (key generation)
- Authentication challenges
- Side-channel protection random numbers
- ECDSA Nonces
- Crystals Kyber Noise

RO-based TRNGs

Very common, but medium throughput, power hungry, sensitive to PVT variations

Motivation

Principles of SR-latch TRNG

Stochastic Model

Device Aging

Experimental Setup and Results

SPICE simulation

R

S

0

M=Metastable state

1.2 1.1 1.0 0.9 0.8 Μ 0.7 ≥^{0.6} 0.5 0.4 -0.3 0.2 0.1 0.0 0.0 100.0 150.0 200.0 250.0 50.0 300.0 400.0 500.0 550. time (ps)

SR-latch based TRNGs

With a small **noise** around M, Q will converge to a stable state randomly ⇒**TRNG**

PUF Vs. TRNG

• An imbalance due to the **mismatch** between the two NOR gates makes the SR-latch behave like a PUF

• This mismatch is equivalent to a **delay** offset ΔM between the S and R input.

pdf of the delay offset ΔM to characterize the mismatch between two 2 NOR gates

Among a set of *N* SR-latches, some of them are statistically near the metastable state. The others can be used as PUF

Set of SRlatches

Important Question:

What is the value of *N* to get a good entropy ?

Motivation

Principles of SR-latch TRNG

Stochastic Model

Device Aging

Experimental Setup and Results

Stochastic Model

Probability of the TRNG

If *pi* is the probability that latch *i* is at '1' then *pi* of the ideal latch should be *pi* = ½ We define the bias $\varepsilon_i = p_i - 1/2$. By applying the piling-up lemma, The probability $P_0 = \mathbb{P}[TRNG = 0]$ ORing N latches is:

 $Z \sim \mathcal{N}(0, \sigma^2)$

$$P_0 = 1/2 + 2^{N-1} \prod_{i=1}^N \varepsilon_i,$$

The mismatch is characterized by a **delay offset** ΔM between the S and R inputs:

$$\Delta_M \sim \mathcal{N}(0, \Sigma^2)$$

The noise *Z* is considered gaussian:

We define the Mismatch to Noise ratio as:

$$MNR = \frac{\Sigma}{\sigma}$$

This MNR ratio has to be as low as possible for the TRNG

Stochastic Model

Mean Entropy

We demonstrated that the closed form of the mean bias according to MNR is:

$$\widehat{|\varepsilon_i|} = \frac{1}{\pi} \arctan\left(\mathsf{MNR}\right)$$

By considering that the pi are independent, the mean probability of the TRNG is:

$$\widehat{P_0} = 1/2 + (-1)^s \cdot 2^{N-1} \left(\frac{1}{\pi} \arctan\left(\mathsf{MNR}\right)\right)^N \qquad s = sign(\prod_{i=1}^N \varepsilon_i)$$

The mean Shannon Entropy can be computed with

$$\widehat{P_0}$$
 $\widehat{P_1} = 1 - \widehat{P_0}$

$$\widehat{H} = -\sum_{i \in \{0,1\}} \widehat{P}_i \log(\widehat{P}_i)$$

[1] Danger, J. L., Yashiro, R., Graba, T., Mathieu, Y., Si-Merabet, A., Sakiyama, K., ... & Nagata, M. (2018, August). Analysis of mixed PUF-TRNG circuit based on SR-latches in FD-SOI technology. In 2018 21st Euromicro Conference on Digital System Design (DSD) (pp. 508-515). IEEE.

Motivation

Principles of SR-latch TRNG

Stochastic Model

Device Aging

Experimental Setup and Results

Device Aging

- Hot Carrier Injection (HCI)
 - Cause: Electrons colliding with the gate oxide (rather than going only to the conduction channel between source and drain)
 - Impact: *V*_{th} increase

- Negative Bias Temperature Instability (NBTI)
 - Cause: Holes creating traps between Si-SiO2 and substrate
 - Impact: V_{th} increase, (stress & recovery modes)
- We are to investigate how the SR-Latch Based TRNG Works during the course of usage (when aged)

Motivation

Principles of SR-latch TRNG

Stochastic Model

Device Aging

Experimental Setup and Results

First order analysis

Impact of Aging on V_{th} of TRNG's Transistors

NBTI an PBTI Aging makes the latch to go toward metastability

NOR-based TRNG

NAND-based TRNG

Timing Analysis

The propagation time drastically increases when approaching metastabilty

- Our circuit includes 1024 latches
- 45nm open-source NANGATE technology
- Hspice Monte-Carlo simulation
 - Transistor gate length $\rightarrow L: 3\sigma = 10\%$
 - Threshold voltage $(V_{th}) \rightarrow V_{th}: 3\sigma = 30\%$
 - Gate oxide thickness $\rightarrow t_{ox}: 3\sigma = 3\%$
- $Temp = 85^{\circ}, V_{dd} = 1.2V, Freq. = 500 MHz$
- Impact of 7 years of aging

Impact of Aging on Propagation Time of SR-Latches that keep the same state (cont'd)

Impact of Aging on Propagation Time of SR-Latches with state toggling

- Evolution of propagation time with aging for 2 sample latches
- Propagation time is increased, then after specific ages the PG monotonically İS decreased

New Device Toggle in QN, Aged Device Toggle in Q

180

160

Sweeping ∆M until we observe a transition in output.

SR-Latch based TRNG becomes more metastable over time

Mean Entropy Evaluation Example

MNR = 10, $\sigma_{noise} = 100 fs$

#latches year	20	40	80
0	0.833	0.985	0.997
2	0.927	0.995	0.999
4	0.960	0.999	1
6	0.940	0.995	1

 $H = -P_0 \log(P_0) - P_1 \log(P_1)$

Entropy is increased with the number of latches

Aging slightly improves the entropy

MNR = 20, $\sigma_{noise} = 50 fs$

#latches year	20	40	80
0	0.580	0.876	0.943
2	0.700	0.918	0.995
4	0.731	0.923	0.994
6	0.721	0.913	0.999

Motivation

Principles of SR-latch TRNG

Stochastic Model

Device Aging

Experimental Setup and Results

- Building of the Stochastic model of the SR-latch TRNG to size the number of latches of the architecture
- We shown that Aging has globally a positive impact on the entropy of the SR latch.
- Future works are to confirm our results on real devices with different process mismatch and noise levels.